Knowledge Engineering in the Age of LLMs: Bridging Symbolic AI and Neural Networks
An in-depth exploration of how Large Language Models are transforming knowledge engineering, from ontology construction and semantic reasoning to production-grade RAG systems and LLMOps best practices.
Table of Contents
The Renaissance of Knowledge Engineering
For decades, knowledge engineering was the domain of symbolic AI practitioners meticulously crafting ontologies, expert systems, and inference rules. The field promised machines that could reason like humans, but the "knowledge acquisition bottleneck" the laborious process of extracting and formalizing expert knowledge proved to be its Achilles' heel.
Enter Large Language Models. With their capacity to absorb and synthesize vast amounts of human knowledge during pre-training, LLMs have fundamentally altered the knowledge engineering landscape. They do not replace symbolic approaches but rather create a powerful synergy: neural networks provide flexible knowledge acquisition, while symbolic structures provide interpretable reasoning.
The KnowledgeEngineeringLLM project demonstrates this synthesis, providing a comprehensive framework for building knowledge-intensive AI systems that combine the best of both paradigms.
The Knowledge Engineering Transformation
Traditional knowledge engineering followed a waterfall-like process: knowledge elicitation from experts, formalization into logical representations, validation, and deployment. This approach was brittle, expensive, and struggled to scale.
LLM-powered knowledge engineering inverts this paradigm:
Knowledge Graph Architecture
Key Paradigm Shifts
| Aspect | Traditional Approach | LLM-Powered Approach |
|---|---|---|
| Knowledge Source | Human experts | Documents, corpora, and expert validation |
| Formalization | Manual ontology authoring | Automated extraction with human oversight |
| Scalability | Limited by expert availability | Scales with compute and data |
| Maintenance | Expensive version updates | Continuous learning and refinement |
| Flexibility | Rigid schemas | Adaptive representations |
Knowledge Representation in LLM Systems
The foundation of any knowledge engineering effort is representation. LLM-based systems operate across multiple representational layers, each serving distinct purposes in the knowledge pipeline.
The Representational Stack
Knowledge Graph Architecture
Embedding-Based Knowledge
At the neural layer, knowledge is represented as dense vectors in high-dimensional space. These embeddings capture semantic relationships implicitly:
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
class KnowledgeEmbedder:
"""
Transforms textual knowledge into semantic vector representations.
"""
def __init__(self, model_name: str = "all-mpnet-base-v2"):
self.encoder = SentenceTransformer(model_name)
self.knowledge_base = {}
self.embeddings = None
def add_knowledge(self, entities: dict[str, str]):
"""
Add knowledge entities with their descriptions.
Args:
entities: Dict mapping entity names to descriptions
"""
self.knowledge_base.update(entities)
descriptions = list(self.knowledge_base.values())
self.embeddings = self.encoder.encode(descriptions)
def find_related(self, query: str, top_k: int = 5) -> list[tuple[str, float]]:
"""
Find knowledge entities semantically related to a query.
"""
query_embedding = self.encoder.encode([query])
similarities = cosine_similarity(query_embedding, self.embeddings)[0]
indices = np.argsort(similarities)[::-1][:top_k]
entities = list(self.knowledge_base.keys())
return [(entities[i], float(similarities[i])) for i in indices]
def compute_relation_strength(self, entity_a: str, entity_b: str) -> float:
"""
Compute semantic relatedness between two entities.
"""
emb_a = self.encoder.encode([self.knowledge_base[entity_a]])
emb_b = self.encoder.encode([self.knowledge_base[entity_b]])
return float(cosine_similarity(emb_a, emb_b)[0][0])
Structured Knowledge Graphs
While embeddings capture implicit relationships, explicit knowledge graphs provide interpretable structure:
from rdflib import Graph, Namespace, URIRef, Literal
from rdflib.namespace import RDF, RDFS, OWL
from typing import List, Tuple
class KnowledgeGraphBuilder:
"""
Constructs RDF knowledge graphs from LLM-extracted information.
"""
def __init__(self, namespace: str = "http://example.org/ontology#"):
self.graph = Graph()
self.ns = Namespace(namespace)
self.graph.bind("ex", self.ns)
self.graph.bind("owl", OWL)
def add_class(self, class_name: str, parent: str = None):
"""Define an ontological class."""
class_uri = self.ns[class_name]
self.graph.add((class_uri, RDF.type, OWL.Class))
self.graph.add((class_uri, RDFS.label, Literal(class_name)))
if parent:
self.graph.add((class_uri, RDFS.subClassOf, self.ns[parent]))
def add_entity(self, entity: str, entity_class: str, properties: dict = None):
"""Add an instance to the knowledge graph."""
entity_uri = self.ns[entity.replace(" ", "_")]
self.graph.add((entity_uri, RDF.type, self.ns[entity_class]))
self.graph.add((entity_uri, RDFS.label, Literal(entity)))
if properties:
for prop, value in properties.items():
prop_uri = self.ns[prop]
if isinstance(value, str) and value.startswith("http"):
self.graph.add((entity_uri, prop_uri, URIRef(value)))
else:
self.graph.add((entity_uri, prop_uri, Literal(value)))
def add_relation(self, subject: str, predicate: str, obj: str):
"""Add a relationship between entities."""
subj_uri = self.ns[subject.replace(" ", "_")]
pred_uri = self.ns[predicate]
obj_uri = self.ns[obj.replace(" ", "_")]
self.graph.add((subj_uri, pred_uri, obj_uri))
def query(self, sparql: str) -> List[Tuple]:
"""Execute a SPARQL query against the knowledge graph."""
return list(self.graph.query(sparql))
def serialize(self, format: str = "turtle") -> str:
"""Export the graph in the specified format."""
return self.graph.serialize(format=format)
Reasoning with LLMs
Traditional knowledge systems relied on formal inference engines. LLMs introduce a new paradigm: neural reasoning that combines pattern recognition with learned logical structures.
The Hybrid Reasoning Architecture
RAG Architecture
Chain-of-Thought Knowledge Reasoning
LLMs can perform multi-step reasoning when properly prompted:
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
class KnowledgeReasoner:
"""
Implements chain-of-thought reasoning over knowledge bases.
"""
REASONING_TEMPLATE = """You are a knowledge reasoning system. Given the following
knowledge context and question, reason step-by-step to derive the answer.
Knowledge Context:
{context}
Question: {question}
Let's think through this step-by-step:
1. First, identify the relevant facts from the knowledge context.
2. Then, determine what logical connections exist between these facts.
3. Apply any necessary inference rules.
4. Derive the final conclusion.
Reasoning:"""
def __init__(self, model_name: str = "mistralai/Mistral-7B-Instruct-v0.2"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto"
)
def reason(self, knowledge_context: str, question: str) -> dict:
"""
Perform chain-of-thought reasoning over knowledge.
Returns:
Dict with 'reasoning_chain' and 'conclusion'
"""
prompt = self.REASONING_TEMPLATE.format(
context=knowledge_context,
question=question
)
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=512,
temperature=0.3,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
reasoning = response.split("Reasoning:")[-1].strip()
# Extract conclusion from reasoning chain
lines = reasoning.split("\n")
conclusion = lines[-1] if lines else reasoning
return {
"reasoning_chain": reasoning,
"conclusion": conclusion
}
Symbolic Validation
Neural reasoning benefits from symbolic validation to ensure logical consistency:
class SymbolicValidator:
"""
Validates LLM reasoning against knowledge graph constraints.
"""
def __init__(self, knowledge_graph: KnowledgeGraphBuilder):
self.kg = knowledge_graph
def validate_assertion(self, subject: str, predicate: str, obj: str) -> dict:
"""
Check if an assertion is consistent with the knowledge graph.
"""
# Check if entities exist
subject_query = f"""
ASK {{ ?s rdfs:label "{subject}" }}
"""
subject_exists = bool(list(self.kg.query(subject_query)))
# Check domain/range constraints
constraint_query = f"""
SELECT ?domain ?range WHERE {{
ex:{predicate} rdfs:domain ?domain .
ex:{predicate} rdfs:range ?range .
}}
"""
constraints = list(self.kg.query(constraint_query))
# Validate type compatibility
type_query = f"""
SELECT ?type WHERE {{
?s rdfs:label "{subject}" .
?s rdf:type ?type .
}}
"""
subject_types = [str(t[0]) for t in self.kg.query(type_query)]
return {
"subject_exists": subject_exists,
"constraints": constraints,
"subject_types": subject_types,
"is_valid": subject_exists and len(constraints) > 0
}
Production-Grade RAG Implementation
Retrieval-Augmented Generation (RAG) represents the practical application of knowledge engineering principles in LLM systems. It grounds model outputs in factual knowledge, dramatically reducing hallucinations.
RAG Architecture for Knowledge Systems
RAG Architecture
Advanced RAG Implementation
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.schema import Document
from typing import List, Optional
import hashlib
class KnowledgeRAGSystem:
"""
Production-grade RAG system with hybrid retrieval and fact validation.
"""
def __init__(
self,
embedding_model: str = "sentence-transformers/all-mpnet-base-v2",
chunk_size: int = 512,
chunk_overlap: int = 50
):
self.embeddings = HuggingFaceEmbeddings(
model_name=embedding_model,
model_kwargs={'device': 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
separators=["\n\n", "\n", ". ", " ", ""]
)
self.vector_store = None
self.knowledge_graph = KnowledgeGraphBuilder()
self.document_registry = {}
def _compute_doc_id(self, content: str) -> str:
"""Generate unique document identifier."""
return hashlib.sha256(content.encode()).hexdigest()[:16]
def ingest_documents(self, documents: List[dict]):
"""
Ingest documents into both vector store and knowledge graph.
Args:
documents: List of dicts with 'content', 'metadata', and optional 'entities'
"""
all_chunks = []
for doc in documents:
doc_id = self._compute_doc_id(doc['content'])
self.document_registry[doc_id] = doc
# Split into chunks for vector store
chunks = self.text_splitter.split_text(doc['content'])
for i, chunk in enumerate(chunks):
chunk_doc = Document(
page_content=chunk,
metadata={
**doc.get('metadata', {}),
'doc_id': doc_id,
'chunk_index': i
}
)
all_chunks.append(chunk_doc)
# Extract entities for knowledge graph
if 'entities' in doc:
for entity in doc['entities']:
self.knowledge_graph.add_entity(
entity['name'],
entity['type'],
entity.get('properties', {})
)
if 'relations' in entity:
for rel in entity['relations']:
self.knowledge_graph.add_relation(
entity['name'],
rel['predicate'],
rel['object']
)
# Build vector store
if self.vector_store is None:
self.vector_store = FAISS.from_documents(all_chunks, self.embeddings)
else:
self.vector_store.add_documents(all_chunks)
print(f"Ingested {len(documents)} documents ({len(all_chunks)} chunks)")
def hybrid_retrieve(
self,
query: str,
vector_k: int = 5,
graph_depth: int = 2
) -> dict:
"""
Perform hybrid retrieval combining vector similarity and graph traversal.
"""
# Vector similarity search
vector_results = self.vector_store.similarity_search_with_score(
query, k=vector_k
)
# Extract entities from query for graph search
# In production, use NER or LLM for entity extraction
query_terms = query.lower().split()
graph_results = []
for term in query_terms:
sparql = f"""
SELECT ?entity ?label ?type WHERE {{
?entity rdfs:label ?label .
?entity rdf:type ?type .
FILTER(CONTAINS(LCASE(?label), "{term}"))
}} LIMIT 10
"""
results = self.knowledge_graph.query(sparql)
graph_results.extend(results)
return {
"vector_results": [
{"content": doc.page_content, "score": float(score), "metadata": doc.metadata}
for doc, score in vector_results
],
"graph_results": [
{"entity": str(r[0]), "label": str(r[1]), "type": str(r[2])}
for r in graph_results
]
}
def generate_response(
self,
query: str,
llm,
validate: bool = True
) -> dict:
"""
Generate a knowledge-grounded response.
"""
# Retrieve relevant context
retrieval = self.hybrid_retrieve(query)
# Assemble context
vector_context = "\n\n".join([
f"[Source {i+1}]: {r['content']}"
for i, r in enumerate(retrieval['vector_results'][:3])
])
graph_context = ""
if retrieval['graph_results']:
graph_context = "\n\nRelated Entities:\n" + "\n".join([
f"- {r['label']} ({r['type'].split('#')[-1]})"
for r in retrieval['graph_results'][:5]
])
# Generate response
prompt = f"""Based on the following knowledge context, answer the question accurately.
If the context doesn't contain enough information, acknowledge the limitation.
Knowledge Context:
{vector_context}
{graph_context}
Question: {query}
Answer:"""
response = llm.generate(prompt)
result = {
"query": query,
"response": response,
"sources": retrieval['vector_results'],
"related_entities": retrieval['graph_results']
}
# Optional fact validation
if validate and retrieval['graph_results']:
result["validation"] = self._validate_response(response, retrieval)
return result
def _validate_response(self, response: str, retrieval: dict) -> dict:
"""
Validate response claims against knowledge graph.
"""
# In production, extract claims and verify each
# Simplified validation here
entity_labels = {r['label'].lower() for r in retrieval['graph_results']}
response_lower = response.lower()
mentioned_entities = [e for e in entity_labels if e in response_lower]
return {
"entities_grounded": len(mentioned_entities),
"total_retrieved_entities": len(entity_labels),
"grounding_ratio": len(mentioned_entities) / max(len(entity_labels), 1)
}
LLMOps for Knowledge Systems
Operationalizing knowledge engineering systems requires specialized MLOps practices that we term LLMOps. These practices address the unique challenges of maintaining knowledge-intensive AI systems.
The LLMOps Lifecycle
MLOps Pipeline
Evaluation Framework
Knowledge systems require multi-dimensional evaluation:
from dataclasses import dataclass
from typing import List, Callable
import numpy as np
@dataclass
class EvaluationMetric:
name: str
compute: Callable
threshold: float
class KnowledgeSystemEvaluator:
"""
Comprehensive evaluation framework for knowledge-augmented LLM systems.
"""
def __init__(self):
self.metrics = [
EvaluationMetric(
name="retrieval_precision",
compute=self._compute_retrieval_precision,
threshold=0.7
),
EvaluationMetric(
name="answer_relevance",
compute=self._compute_answer_relevance,
threshold=0.75
),
EvaluationMetric(
name="factual_consistency",
compute=self._compute_factual_consistency,
threshold=0.85
),
EvaluationMetric(
name="hallucination_rate",
compute=self._compute_hallucination_rate,
threshold=0.1 # Lower is better
)
]
def _compute_retrieval_precision(
self,
retrieved_docs: List[str],
relevant_docs: List[str]
) -> float:
"""Precision of retrieved documents."""
if not retrieved_docs:
return 0.0
relevant_retrieved = set(retrieved_docs) & set(relevant_docs)
return len(relevant_retrieved) / len(retrieved_docs)
def _compute_answer_relevance(
self,
query: str,
response: str,
embedder
) -> float:
"""Semantic similarity between query and response."""
query_emb = embedder.encode([query])
response_emb = embedder.encode([response])
from sklearn.metrics.pairwise import cosine_similarity
return float(cosine_similarity(query_emb, response_emb)[0][0])
def _compute_factual_consistency(
self,
response: str,
source_docs: List[str],
nli_model
) -> float:
"""
Check if response is entailed by source documents.
Uses Natural Language Inference.
"""
consistency_scores = []
for doc in source_docs:
# NLI: premise=doc, hypothesis=response
score = nli_model.predict(premise=doc, hypothesis=response)
consistency_scores.append(score['entailment'])
return np.mean(consistency_scores) if consistency_scores else 0.0
def _compute_hallucination_rate(
self,
response: str,
source_docs: List[str],
claim_extractor
) -> float:
"""
Detect claims in response not supported by sources.
"""
claims = claim_extractor.extract(response)
unsupported = 0
for claim in claims:
if not any(claim.lower() in doc.lower() for doc in source_docs):
unsupported += 1
return unsupported / max(len(claims), 1)
def evaluate(self, test_cases: List[dict], system, embedder, nli_model, claim_extractor) -> dict:
"""
Run comprehensive evaluation on test cases.
"""
results = {metric.name: [] for metric in self.metrics}
for case in test_cases:
response = system.generate_response(case['query'], case.get('llm'))
# Compute each metric
results['retrieval_precision'].append(
self._compute_retrieval_precision(
[r['content'] for r in response['sources']],
case.get('relevant_docs', [])
)
)
results['answer_relevance'].append(
self._compute_answer_relevance(
case['query'],
response['response'],
embedder
)
)
# Additional metrics computed similarly...
# Aggregate results
summary = {}
for metric in self.metrics:
scores = results[metric.name]
avg_score = np.mean(scores) if scores else 0.0
summary[metric.name] = {
'score': avg_score,
'threshold': metric.threshold,
'passed': avg_score >= metric.threshold if metric.name != 'hallucination_rate'
else avg_score <= metric.threshold
}
return summary
Production Deployment Patterns
from functools import lru_cache
from datetime import datetime, timedelta
import asyncio
class ProductionKnowledgeService:
"""
Production-ready knowledge service with caching and monitoring.
"""
def __init__(self, rag_system: KnowledgeRAGSystem, cache_ttl: int = 3600):
self.rag = rag_system
self.cache_ttl = cache_ttl
self.query_cache = {}
self.metrics = {
'total_queries': 0,
'cache_hits': 0,
'avg_latency_ms': 0,
'error_count': 0
}
def _cache_key(self, query: str) -> str:
"""Generate cache key for query."""
return hashlib.sha256(query.lower().strip().encode()).hexdigest()
def _is_cache_valid(self, cached_entry: dict) -> bool:
"""Check if cache entry is still valid."""
if not cached_entry:
return False
cached_time = cached_entry.get('timestamp')
if not cached_time:
return False
return datetime.now() - cached_time < timedelta(seconds=self.cache_ttl)
async def query(self, query: str, bypass_cache: bool = False) -> dict:
"""
Handle query with caching and monitoring.
"""
start_time = datetime.now()
self.metrics['total_queries'] += 1
cache_key = self._cache_key(query)
# Check cache
if not bypass_cache and cache_key in self.query_cache:
if self._is_cache_valid(self.query_cache[cache_key]):
self.metrics['cache_hits'] += 1
return self.query_cache[cache_key]['response']
try:
# Execute query
response = await asyncio.to_thread(
self.rag.generate_response,
query,
self.llm
)
# Update cache
self.query_cache[cache_key] = {
'response': response,
'timestamp': datetime.now()
}
# Update latency metrics
latency = (datetime.now() - start_time).total_seconds() * 1000
n = self.metrics['total_queries']
self.metrics['avg_latency_ms'] = (
(self.metrics['avg_latency_ms'] * (n-1) + latency) / n
)
return response
except Exception as e:
self.metrics['error_count'] += 1
raise
def get_metrics(self) -> dict:
"""Return service metrics for monitoring."""
return {
**self.metrics,
'cache_hit_rate': self.metrics['cache_hits'] / max(self.metrics['total_queries'], 1),
'error_rate': self.metrics['error_count'] / max(self.metrics['total_queries'], 1)
}
async def refresh_knowledge(self, documents: List[dict]):
"""
Incrementally update knowledge base.
"""
await asyncio.to_thread(self.rag.ingest_documents, documents)
# Invalidate affected cache entries
self.query_cache.clear()
Strategic Implications
The convergence of LLMs and knowledge engineering has profound implications for enterprise AI strategy.
The Knowledge Moat
Organizations that effectively capture and operationalize domain knowledge through LLM systems create sustainable competitive advantages:
- Proprietary Knowledge Bases: Internal documents, processes, and expertise become queryable assets
- Institutional Memory: Organizational knowledge persists beyond individual employee tenure
- Accelerated Decision Making: On-demand access to relevant knowledge improves decision quality
- Reduced Training Costs: New employees can query existing knowledge rather than relying solely on mentorship
Build vs. Buy Considerations
| Factor | Build Custom | Use Commercial Solutions |
|---|---|---|
| Domain Specificity | High customization possible | Limited to general domains |
| Data Privacy | Full control over data | Potential exposure concerns |
| Maintenance Burden | Significant ongoing effort | Vendor-managed updates |
| Cost Structure | High upfront, lower ongoing | Lower upfront, usage-based |
| Time to Value | Longer development cycle | Rapid deployment |
The Future of Knowledge Work
LLM-powered knowledge engineering is reshaping how organizations manage intellectual capital:
- From Documents to Knowledge Graphs: Static documents transform into queryable, interconnected knowledge structures
- From Search to Reasoning: Simple keyword search evolves into multi-step reasoning over complex knowledge
- From Manual to Automated: Knowledge curation shifts from entirely manual to AI-assisted with human oversight
- From Static to Continuous: Knowledge bases become living systems that learn and adapt
Conclusion
Knowledge engineering is experiencing a renaissance driven by Large Language Models. The KnowledgeEngineeringLLM project demonstrates that the future lies not in choosing between neural and symbolic approaches, but in their thoughtful integration.
Key takeaways from this exploration:
- Hybrid Representations: Combine embeddings for flexible retrieval with knowledge graphs for interpretable structure
- Neural-Symbolic Reasoning: Use LLMs for flexible pattern matching while grounding outputs in symbolic knowledge
- Production RAG: Implement robust retrieval-augmented generation with hybrid search and fact validation
- LLMOps Practices: Apply specialized operational practices for knowledge-intensive AI systems
- Strategic Value: Knowledge engineering capabilities create sustainable competitive advantages
The organizations that master these techniques will be positioned to unlock unprecedented value from their institutional knowledge, transforming information assets into intelligent, queryable systems that augment human decision-making at scale.
Explore the complete implementation and contribute to the project at github.com/mgorav/KnowledgeEngineeringLLM. We welcome collaboration from the knowledge engineering and AI communities.